Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sehriman Atalay ${ }^{\text {a* }}$ and Ayșen Ağar ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences,
Ondokuz Mayıs University, Kurupelit, 55139
Samsun, Turkey
Correspondence e-mail: atalays@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.045$
$w R$ factor $=0.120$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Benzyl 2-(3,4-dicyanophenoxy)benzoate

The title compound, $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$, contains three planar aromatic rings arranged in a U -shaped conformation. There are weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions stabilizing the crystal structure.

Comment

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally substituted phthalocyanine complexes and subphthalocyanines. For many years, these compounds and their substituted analogues have attracted great interest in various research fields, such as chemical sensors, electrochromism, batteries, semiconductors, molecular metals, catalysts, photochemical hole burning, liquid crystals and non-linear optics (McKeown, 1998; Leznoff \& Lever, 1989-1996).

(I)

The title compound, (I), contains three planar sixmembered aromatic rings (A C1-C6, B C9-C14 and C C15C20) arranged in a U-shaped conformation (Fig. 1). The dihedral angles formed by these rings are $A / B=74.28$ (7), $A /$ $C=10.03$ (7) and $B / C=76.60(5)^{\circ}$.

Selected bond lengths and angles are quoted in Table 1. The $\mathrm{C} \equiv \mathrm{N}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{O}$ bond lengths are consistent with those found in similar compounds (Ocak et al., 2004; Iskeleli \& Ağar, 2005; Erdem, Atalay, Akdemir, Ağar \& Kantar, 2004; Erdem, Atalay, Akdemir, Ağar \& Özil, 2004).

The crystal structure is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions (Table 2).

Experimental

Benzyl 2-hydroxybenzoate ($1.77 \mathrm{~g}, 7.75 \mathrm{mmol}$) and 4-nitrophthalonitrile ($1.0 \mathrm{~g}, 5.78 \mathrm{mmol}$) were dissolved in dry dimethylformamide $(50 \mathrm{ml})$. After stirring for 30 min at room temperature, dry finepowdered potassium carbonate $(2.40 \mathrm{~g}, 17.39 \mathrm{mmol})$ was added portionwise over 2 h with stirring. The reaction was stirred for 48 h at
room temperature and poured into ice-water $(200 \mathrm{~g})$. The product was filtered off and washed with ($10 \% w / w$) NaOH solution and water until the filtrate was neutral. Recrystallization from ethanol gave a white product (yield $1.70 \mathrm{~g}, 83.01 \%$). Single crystals were obtained from absolute ethanol at room temperature via slow evaporation (m.p. 358 K); elemental analysis calculated for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 74.57, H 3.98, N 7.91%; found: C 74.70 H 3.96 N 7.80%. IR ($\nu_{\text {max }}, \mathrm{cm}^{-1}$): 3045-3025 (Ar-CH), 2966-2842 (CH), 2225 (CN).

Crystal data

```
\(\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}\)
\(M_{r}=354.35\)
Monoclinic, \(P 2_{1} / c\)
\(a=7.5535(5)\)
\(a=7.5535\) (5) A
\(b=18.3764\) (9) \(\AA\)
\(c=12.9216\) (9) \(\AA\)
\(\beta=91.979\) ( 6\()^{\circ}\)
\(V=1792.53(19) \AA^{3}\)
\(Z=4\)
```


Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.989, T_{\text {max }}=0.996$
25200 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.120$
$S=1.02$
3521 reflections
245 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C7-O1	$1.4659(18)$	C15-O3	$1.3649(17)$
C8-O2	$1.2023(18)$	C21-N1	$1.135(2)$
C8-O1	$1.3284(19)$	C22-N2	$1.141(2)$
C14-O3	$1.3963(18)$		
O2-C8-O1	$124.08(14)$	C8-O1-C7	$116.35(13)$
O2-C8-C9	$122.12(14)$	C15-O3-C14	$119.30(11)$
O1-C8-C9	$113.80(13)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.48	$3.308(2)$	149
$\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.93	2.36	$3.289(2)$	173

Symmetry codes: (i) $1+x, y, z$; (ii) $-x, 1-y, 1-z$.

All H atoms were placed in calculated positions and refined using a riding model. $\mathrm{C}-\mathrm{H}$ distances were set at 0.93 (aromatic H) and $0.97 \AA$ (methylene H). $U_{\text {iso }}(\mathrm{H})$ values were constrained to be 1.2 times $U_{\text {eq }}$ of the carrier atom. The poor quality of the crystal may account for the rather high $R_{\text {int }}$ value.

$$
\begin{aligned}
& D_{x}=1.313 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 25200
reflections
$\theta=1.9-28.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.56 \times 0.42 \times 0.22 \mathrm{~mm}$

3521 independent reflections
2557 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.168$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-22 \rightarrow 22$
$l=-15 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0641 P)^{2}\right. \\
& +0.0771 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.078 \text { (5) }
\end{aligned}
$$

organic papers

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Iskeleli, N. O. \& Ağar A. (2005). Acta Cryst. E61, o158-o159.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 \& 4. Weinheim \& New York: VHC Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Ocak, N., Işk, Ş., Akdemir, N., Kantar, C. \& Ağar, E. (2004). Acta Cryst. E60, o361-o362.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). PLUTON. University of Utrecht, The Netherlands.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X-AREA (Version 1.118) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

